

Chapitre 2 Les Nutriments

Diététique Sportive

Chapitre 2 – Les Nutriments

<u>1</u> – Introduction et rappels

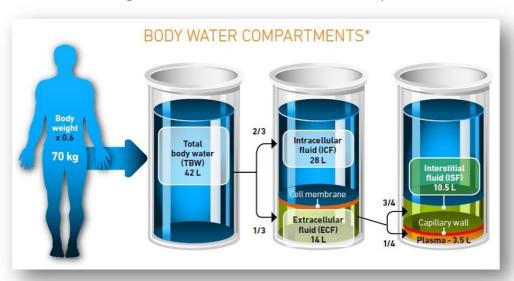
Nous allons à présent passer en revue les bases physiologiques sur lesquelles reposent les conseils et détailler pour chaque nutriment, vitamines et minéraux les justificatifs permettant de choisir les aliments et boissons les mieux adaptés en fonction des circonstances

Quelques rappels du Chapitre 1

- ✓ Avoir une bonne **évaluation des besoins énergétiques** par le calcul du métabolisme basal et de l'activité physique. Ce qui permet de connaître la Dépense énergétique totale à couvrir par l'alimentation
- ✓ Obtenir une alimentation équilibrée et variée
- ✓ Maintenir une bonne hydratation en buvant de l'eau
- ✓ Manger environ **400g de végétaux** : soit 4 à 5 portions de 80 à 100g ce qui donne par exemple avec 2 à 3 fruits de 80 à 100g par portion plus 200 à 240g de légumes
- ✓ Une poignée de **fruits à coque** sans sel ajouté (environ 20g)
- ✓ Apporter des **féculents** en fonction des besoins : **complets** ou peu raffinés tous les jours et au moins deux fois par semaine des **légumineuses**
- ✓ **Produits laitiers**: deux portions par jour, soit un yaourt de 125g ou 150ml de lait ou 100g de fromage blanc ou 30g de fromage...
- ✓ Consommer du **poisson** ou des fruits de mer deux fois par semaine
- ✓ **Limiter** la consommation de **viande** et volaille à 500g par semaine
- ✓ **Limiter** la consommation de **charcuterie** à 150g par semaine
- ✓ Limiter les consommations excessives de matières grasses ajoutées, de sel, de produits sucrés, desodas

Nous avons également vu qu'il fallait tenir compte de la **composition corporelle et du niveau de masse grasse** pour définir un objectif réalisable concernant la prise ou la perte de poids et que la mise en place du plan alimentaire devait s'anticiper et évoluer progressivement dans le temps

Enfin vous savez à présent qu'une **alimentation équilibrée** se compose d'un ensemble d'aliments divers assurant les besoins en **protéines pour 15 à 20**% des apports, en **glucides pour 45 à 55**% et en lipides et de l'eau en quantité suffisante et adaptée !


2) L'eau

Le contenu en eau d'une personne varie entre **40 à 60% de sa masse**. Répartie dans tout l'organisme humain, l'eau intracellulaire représente 62% et à extracellulaire, environ 38%. Bien que n'apportant aucune calorie, l'eau est essentielle à la vie et assure différentes fonctions au sein de notre organisme :

- Constituant du sang, l'eau participe au **transport des nutriments**, des déchets, des gaz (CO2 et O2) et des hormones
- Constituant de la synovie, elle participe à la **lubrification des articulations**
- Constituant du noyau du disque vertébral, l'eau joue un rôle d'amortisseur
- Constituant des structures, l'eau joue un rôle plastique

L'eau joue également un rôle de solvant (**hydrolyse**) et participe ainsi aux réactions chimiques de l'organisme (digestion, glycolyse, cycle de Krebs...). Nos besoins en eau sont d'environ **1ml par Kcal**. La consommation de protéines en augmente les besoins d'environ **3ml/g**.

Elle participe également à la **régulation de la température du corps**, fonction très importante nécessitant une participation hormonale afin de réguler et maintenir des concentrations adéquates.

L'activité physique est consommatrice d'eau. L'organisme régule ses besoins en fonction de facteurs internes (besoins métaboliques, maintien de la volémie, de la température ...) et externes (environnement chaud, froid, humide...) :

→ Dt ventilatoire => H2O, CO2

• Voie cutanée => 70% d'énergie dissipée sous forme de chaleur

Ce besoin n'est pas souvent pris en compte par les sportifs!

Lors des entraînements, un sportif peut **perdre jusqu'à 4L d'eau**! Bien que peu souligné par eux lorsqu'on leur en demande la composition, la **sueur** est composée à **99% d'eau**! Les 1% restants sont constitués de sels minéraux : sodium, potassium...

On a constaté que la fuite des sels minéraux était moindre chez les sportifs expérimentés. La quantité de sueur a été étudiée au niveau de différents sports. On l'estime à environ 0,5 à 1L/Heure selon la température :

TENNIS	3 à 4 Litres par match
BOXE	1,5 L/Heure
ENDURANCE LONGUE DUREE	1,5 à 2,5 L/Heure

Quelques repères concernant la sueur :

La sueur contient principalement de l'eau. Elle contient aussi des minéraux, en plus du lactate qui est une forme ionisée de l'acide lactique et de l'urée. La composition minérale varie d'un individu à l'autre, et en fonction de l'accommodation à la chaleur, de l'exercice, de la source du stress (sport, sauna, etc.), la durée de la transpiration, et des minéraux disponibles dans le corps.

La composition-type est de :

- 0.9 grammes/litre de sodium
- 0,2 grammes/litre de potassium
- 0,015 grammes/litre de calcium
- 0.0013 grammes/litre de magnésium

Il y a aussi des traces de beaucoup d'autres éléments dans la sueur, en général leurs quantités sont de : 0,4 mg/l de zinc, 0,3 à 0,8 mg/l de cuivre, 1 mg/l de fer, 0,1 mg/l de chrome, 0,05 mg/l de nickel, 0,05 mg/l de plomb. Il y a souvent d'autres substances moins abondantes dans le corps qui sont présentes dans la transpiration, y compris les substances présentes sur la peau (sébum, etc.). Chez l'humain, la sueur est hyposmotique.

La **réhydratation durant l'entrainement**, même bien conduite, est toujours **déficitaire**. On relève souvent une perte d'1 Litre environ.

Les sportifs ne boivent pas assez : 47% ont une consommation < 1,5L/j.

Les repères donnés sont de **boire environ 1,5** L/J en dehors des plages d'entraînement.

Sportifs	Consommation d'eau					
27,70 %	> 1,5 L					
25,50 %	1,5 L					
29 %	~ 1 L					
18 %	< 1 L					

Les conséquences de la déshydratation

Elle impacte directement la qualité de l'entraînement! Elle abaisse les capacités :

- o d'endurance aérobie et anaérobie
- o de force : 10% pour pour 1% de déficit en eau
- o des douleurs musculaires, tendineuses, claquage
- o sur les fonctions cognitives
 - Des temps de réaction
 - 7 Du nombre d'erreurs (∠ de la maîtrisegestuelle)
 - 7 De la sensation de fatigue ⇒ ∠ de la motivation, de l'engagement...
 - ∠ De la mémoire à court terme (∠ Lucidité)

La nutrition ne va pas faire la performance mais elle contribue au même titre que d'autres paramètres d'hygiène de vie à optimiser l'entraînement. La mise en place d'un plan d'hydratation est prioritaire

Rééquilibrer la ration en eau des sportifs en leur soumettant une structuration des apports tout au long de la journée. D'abord de l'eau : seule boisson indispensable ; celle du robinet convenant parfaitement => aller au plus simple et plus pratique pour optimiser les apports !

L'ajout de nutriments et sels minéraux ne se fera qu'en fonction des besoins propres à l'activité : forte sudation, longue durée, débutant, conditions climatiques... En effet, tous les sports ne nécessitent pas de recourir aux boissons de l'effort

- Les **efforts intenses de courte durée** (quelques dizaines de secondes tout au plus) utilisent comme substrat les phosphagènes intramusculaires (ATP, Créatine phosphate) qui sont resynthétisés durant la récupération à partir des réserves de glycogène musculaire. Un apport ne serait donc pas utilisé dans cecas.
- Les **efforts de moyenne durée** > 10-15 secondes utilisent la glycolyse anaérobie qui aboutit à la production d'acide lactique à partir du glycogène musculaire. Le facteur limitant est alors l'augmentation de l'acidose musculaire qui bloque les voies métaboliques :
 - o Les épreuves sportives de courtes durées ne nécessitent donc pas d'apport alimentaire
 - Pour les épreuves fractionnées (pics d'intensité et récupérations) et les épreuves dans les sports collectifs la quantité de glycogène disponible peut devenir un facteur limitant et un apport peut donc être prévu durant la récupération.
- Les **efforts prolongés** utilisent le métabolisme aérobie qui devient la principale voie métabolique après 20 minutes d'activité. Ce sont donc les substrats d'origine lipidique et glucidique qui sont utilisés et le facteur limitant est la réserve glycogénique hépatique et musculaire limitant considérablement la capacité de travail maximal comme le montre ce schéma (Guezennec, 2011)

L'hydratation en pratique

Les besoins, ou apports nutritionnels conseillés : ANC, concernant l'eau sont de : 1 ml/4,18 Kj (1 Kcal)/J

Apportés par :

- ✓ **Eau de boisson** : 1,5 Litres environ
- ✓ **Eau des aliments** : 1 Litre environ (les végétaux en sont riches donc peu caloriques, les aliments gras, très énergétiques en contiennent très peu ou pas du tout !)
- ✓ **Eau métabolique** : environ 300 ml

Boire, principalement de l'eau, **tout au long de la journée** => meilleur moyen d'obtenir une consommation et une hydratation adéquate !

Important : boire est souvent une contrainte pour le sportif qui n'en perçoit pas toujours l'importance d'où la nécessité d'être directif => **donner un plan rationnel** et simple car l'essentiel est qu'il soit le mieux suivi possible !

Sur le terrain, en début de saison, on peut mettre en place un **contrôle du poids des athlètes avant et après activité afin de mesurer la perte en eau** : celle-ci devra être compensée par la prise de boissons calculée sur la différence de poids x 1,5.


Les paramètres suivants permettent une évaluation de l'hydratation du sportif :

- la couleur des urines informe sur sa concentration
- Le volume : sont évacués normalement 1 à 2 L/J
 - > si < 0,30 L = déshydratation

L'hydratation durant l'effort

Boisson et activité physique

La réhydratation du sportif à l'effort dépend de la vitesse de remplacement des fluides perdus : volume ingérée, vitesse de la vidange et le niveau d'absorption intestinale.

De plus, si l'activité physique de faible à moyenne intensité a peu d'incidences sur la vidange gastrique, au-delà de 70% de la capacité aérobie celle-ci est très ralentie.

La vitesse de la vidange gastrique sera modulée par :

- ✓ **Le volume ingéré**: plus il est important (jusqu'à 700ml chez les hommes, 650 ml chez les femmes) plus elle sera rapide => **boire 150 ml toutes les 20 minutes** est dans la plupart des cas efficace et limite les inconforts provoqués par des apports plus importants
- ✓ La nourriture solide qui la retarde, de même qu'une forte concentration des fluides => Une boisson doit avoir une osmolarité idéale <= 330 mOsm par Kg d'eau
- ✓ Les **boissons contenant 4 à 8% de glucides** (quel que soit le type : glucose, fructose, maltodextrines ou combinés) ne sont pas éliminées plus vite mais ne perturbent pas les fonctions thermiques ou circulatoires
- ✓ Les **conditions environnementales**, la durée et l'exercice léger à modéré ne semblent pas avoir d'influence sur la vitesse de vidange gastrique. L'estomac semble très bien fonctionner pendant l'exercice et dans des conditions environnementales défavorables
- ✓ La température et l'humidité sont des facteurs de variations :

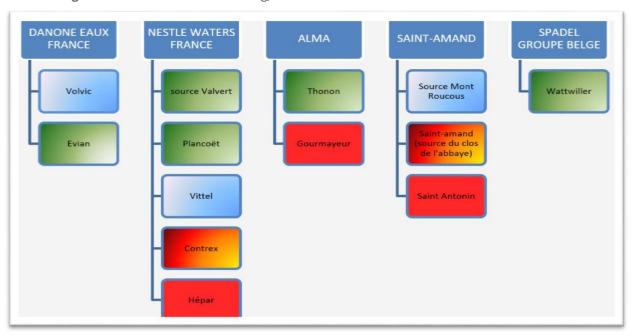
Besoin en eau	Besoin en eau en litres par heure pour différentes ambiances et par type d'activité								
NIVEAU	23 °C	23 °C	30 °C	40 °C					
D'ACTIVITE	50 % Humidité	100 % Humidité	50 % Humidité	100 % Humidité					
Légère	0,100	0,200	0,300	0,5					
(travail assis)									
Modéré	0,300	0,600	1	1,5					
(marche)									
Intense	1,3	2	3	<u>impossible</u>					
(course 15									
Km/h)									

Les travaux de Nancy Rehrer ont permis d'établir le fait que l'ingestion de soluté d'hydrates de carbone améliorait le débit sanguin splanchnique à l'effort et par conséquent l'absorption intestinale des fluides. Ce phénomène semble aussi favorsisé par un faible apport de sodium » (Guezennec, 2011)

Recommandations européennes concernant la composition des boissons de l'effort

2 - Les apports en nutriments et minéraux

- Avant l'effort : s'il est démontré qu'une 🗷 des apports glucidiques (jusqu'à 60 à 70% de la ration en prévision d'efforts de longue durée) dans les jours qui précèdent l'activité permet de meilleures performances, leurs prises, dans l'heure précédent l'exercice, sont beaucoup plus controversées et dépendent de la nature et de la quantité ingérée 🕝 hyperglycémie réactionnelle, inconfort digestif... donc meilleure préparation par prise de 1 à 2g de glucides/Kg de poids corporel + 0,15 à 0,25 g de protéines 3 à 4 heures avant le début d'un effort prolongé
- ⇒ Pendant l'effort : l'amélioration de la performance est démontrée pour des efforts très intenses de moins d'une heure, et constant pour tous ceux d'une durée > à une heure pour lesquels il faut apporter de façon optimum 30 à 60 g d'hydrates de carbone / heure d'effort, permettant ainsi un gain de 15 à 30% de temps


De même, une étude menée par Fielding a mis en évidence, pour un effort au-delà de 2 heures, qu'une prise régulière de 10 à 15g de glucides (surtout glucose mais il peut être intéressant de diversifier les types) dans 200ml d'eau, associés à une légère

prise de sodium, pris toutes les 15 à 20 minutes améliore la performance.

de travail supplémentaire!	Durée de l'activité	Boire:					
ême, une étude menée par	Effort < à 1H, 1H30	Eau uniquement					
ng a mis en évidence, pour	Efforts continus:	Si T° > 15 °C :	Si T° < 10 °C :				
fort au-delà de 2 heures,	d'1H, 1H30	Eau + 20 à 30g de sucre	Eau + 40 à 60g de sucre				
e prise régulière de 10 à		+ 1,2 g de sel					
e glucides (surtout glucose		En cas de forte sudation	E . O E . 1 E				
il peut être intéressant de	Efforts continus > 3	Entre 0,5 et 1,5L heure maxi*					
sifier les types) dans 200ml	heures	Eau <u>+ pour</u> un litre : 20g de glucides + 0,4g de Potassium					
, associés à une légère	A la chaleur et avec forte	+ 1,2g de sel :					
de sodium, pris toutes les	sudation	Entre 0,5 et 1,5L heure maxi*					
20 minutes améliore la	Après l'effort, privilégier	Arvie, Badoît, St Yorre, vichy Ce	élestin (voir détails de ces eaux ci-				
	les eaux bicarbonatées	dessous)					
rmance.	(contiennent aussi du						
	sodium :						

La plupart du temps, une eau peu minéralisée suffit. Toutefois en fonction des besoins une eau plus riche peu compléter les apports en minéraux : ne pas les utiliser en continue et prendre conseil auprès d'un professionnel de santé pour un choix adapté. Les eaux sont vendues par quatre grands groupes :

- En bleu Très faiblement minéralisée < 50 mg/L
- En vert 🏽 faiblement minéralisée < 500 mg/L
- En orange moyennement minéralisée > 500 mg/L et < 1500 mg
- En rouge * très minéralisée > 1500 mg/L

PRIN	NCIPALES CAR	ACTERISTIQUES DES EAUX MINERA	LES	
CARACTERISTIQUES	TAUX DE MINERAUX	EFFETS THERAPEUTIQUES	QUELQUES EAUX	
Oligominérale (peu minéralisée)	< 500 mg/L	Diurétique	Evian, volvic, Plombières, Watviller	
Bicarbonatées chlorée, Calciques et magnésiennes	> 600 mg >200 mg >150 mg > 50mg	Stimulent les sécrétions biliaires et pancréatiques	Châtel-Guyon, Arvie	
Sulfatée Calcique Et magnésienne	>200mg >150mg > 50mg	Diurétique et laxative	Contrex, Vittel, Grande source	
Sulfatée, Magnésienne Et calcique	>200mg > 50mg > 150mg	Laxative	Vittel, <u>Hépar</u>	
Bicarbonatée Sodique Et Chorurée sodique	> 600 mg >200 mg >200 mg	Alcalinisante : amélioration du confort digestif, lutte contre l'acidité gastrique, stimule les sécrétions biliaires et pancréatiques	Vichy Célestins, Saint Yorre et toutes les eaux de Vichy	
Bicarbonatée calcique	>600mg >150mg	Alcalinisante	Perrier, Badoit	
Calcique	>150mg	Participation de manière significative à la couverture de nos besoins en calcium	Talians, Hépar, Contrex	
Magnésienne	> 50mg	Antifatigue, lutte contre les spasmes digestifs et la constipation	Talians, Hépar, Contrex, Arvie, Quézac, Badoit	
Acidulée	>250mg CO ²			
	Figure 5 C	Cours CNED, Module NA3, Tome 2, Page 313	3	

3) Rôle et définitions des vitamines, minéraux et nutriments

<u>Les vitamines</u> sont des substances organiques sans valeur énergétique et indispensables à l'organisme qu'il ne sait pas synthétiser. Font exception :

- la vitamine **B3** (niacine) qui eut être synthétisée à partir du tryptophane
- la vitamine **D** photo synthétisée sous la peau
- la vitamine A synthétisées à partir de son précurseur le Bêtacarotène
- la vitamine **K2** synthétisée par la flore bactérienne

On les regroupe selon leur particularité :

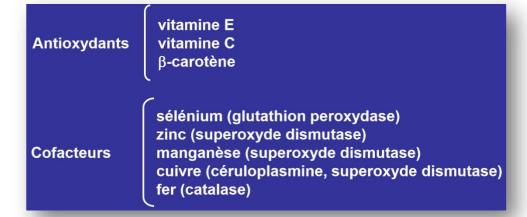
- √ hydrosoluble au nombre de 9
- ✓ **liposoluble** au nombre de 4

En France, il existe peu de carences du fait de l'accessibilité à l'alimentation mis en à part des régimes exclusifs tels celui des végétaliens soumis au manque de B12 par exemple de certaines pathologies... Des déficiences chroniques sont beaucoup plus fréquentes notamment en vitamines C et E, en bêta-carotène et peuvent se révéler en fonction d'un déficit d'apports....

Concernant les sportifs, certaines sont **dépendantes de la ration énergétique** et doivent être apportées car importantes pour le maintien des fonctions métaboliques énergétiques :

⇒ B1, B2, B6, B3, B9, B12, C, E, A + Bêtacarotène et D

				de	18 à	54 an	S							
ALIMENTS	QUANTITE	A	B1	B2	В3	B5	B6	B8	В9	B12	C	D	Е	K
Produits		+		+		+		+	+	0		+		0
Laitiers	1200/07/2000	100												
(3 portions):	30 g + ou	+								-		+		0
Fromage										0				
Yaourt/Petit	125 g + ou													
suisse Fromage	120 g + ou													
blanc	100 g	5	S-20		- 93	0.40	8 - 3		- 9		85 - 38			
VPO (2			+	2.0		+								+
portions)	100 - 1	0	(3)	+	0	0								0
Viandes Abats	100 g + ou	00		0	0	0	0	0		0		0		9
Poissons	100 g + ou 100 à 150g	+		0	9	0	0	0		0		+		0
Œufs	2	500 % (500						0		0		8.00		9
Fruits et			-		1 20			_	8		65 is			
Légumes verts	400 g	ß	+	+	+	+	+	+	0		0		+	0
(5 portions)	400 g		22.400		100			2-38-00						0
Oléagineux	2							+	+		33 18		0	
Céréales et		7	13 1	-	+	+		0	- 01		10 25	- 1	0	+
Féculents entre	50 g					601							42	
3 et 6 portions :	■ 0x250x2=0x													
Pain	30 g			977										
Farine, céréales	25.60%		0	+	+		0	+						
petit déjeuner	200 g													
Légumes secs,	150 g						+		+					
féculents cuits					100									
Pomme de					+						+			
Terre	10.1	,			_	70					10 27			
Huile 1 à 2 portions	10 ml												0	
Beurre	10 g	+	S 3	£ 93		86	3 3	*	š — 38		% - S	+	+	


Référence des ANC	VITAM totale	(µg)	VIT B1			2 (mg)		3 (mg)		5 (mg)		6 (mg)	VIT B		()	B12 ug) 2001	VIT C		VIT D		VITE	(mg)
Relefence des AIVC	ANC	BNM	ANC	BNM	ANC	BNM	ANC	BNM	ANC	BNM		BNM	ANC	BNM		BNM	ANC	BNM	ANC	BNM	ANC	BNM
4-6 ans	450	347	0,6	0,5	1	0,8	8	6,2	3	2,3	0,8	0,7	150	107	1,1	0,9	30	25	13	10	5	:
7-9 ans	500	385	0,8	0,6	1,3	1,0	9	6,9	3,5	2,7	1	0,8	200	142	1,4	1,2	45	40	13	10	6	
0-12 ans	550	424	1	0,8	1,4	1,1	10	7,7	4	3,1	1,3	1,1	250	178	1,9	1,6	70	60	13	10	8	
3 13-15 ans	700	539	1,3	1,0	1,6	1,2	13	10,0	4,5	3,5	1,6	1,3	300	213	2,3	1,9	70	60	13	10	10	
13-15 ans	600	462	1,1	0,8	1,4	1,1	11	8,5	4,5	3,5	1,5	1,2	300	213	2,3	1,9	70	60	13	10	8	
6 16-19 ans	800	616	1,3	1,0	1,6	1,2	14	10,8	5	3,9	1,8	1,5	330	234	2,4	2,0	100	85	13	10	10	
16-19 ans	600	462	1,1	0,8	1,5	1,2	11	8,5	5	3,9	1,5	1,2	300	213	2,4	2,0	90	85	13	10	12	
20-64 ans	800	616	1,3	1,0	1,6	1,2	14	10,8	5	3,9	1,8	1,5	330	234	2,4	2,0	110	85	13	10	10	
20-54 ans	600	462	1,1	0,8	1,5	1,2	11	8,5	5	3,9	1,5	1,2	300	213	2,4	2,0	95	73	13	10	8	
65-75 ans	800	616	1,3	1,0	1,6	1,2	14	10,8	5	3,9	1,8	1,5	330	234	2,4	2,0	110	85	20	10	10	
55-75 ans	600	462	1,1	0,8	1,5	1,2	11	8,5	5	3,9	1,5	1,2	300	213	2,4	2,0	95	73	20	10	8	
1-F >75 ans	650	501	1,2	0,9	1,6	1,2	12,5	9,6	5	3,9	2,2	1,8	330	234	3	2,5	110/95	85/73	20	10	10/8	7,7

Les minéraux et oligoéléments sont des substances minérales peu représentées dans le corps humain : 0,01% du poids de corps pour les premiers, et 0,001% pour les seconds.

On distingue:

- √ 4 minéraux : le calcium, le potassium, le sodium et le magnésium
- ✓ 13 oligoéléments : fer, zinc, cuivre, chrome, manganèse, sélénium, iode, fluor, cobalt, molybdène, silicium, bore et lithium

Certaines sont dites **antioxydantes** préservent la cellule des attaques radiculaires et leurs besoins en sont augmentés chez le sportif :

Apports Nutritionnels Conseillés et Besoin Nutritionnel Moyen pour les MINERAUX dans les différentes catégories de population

	CALC	IUM (mg)	MAGNE (mg	High contract	CUIVR	E (mg)	IODE	(µg)	10.000/2012105	PHORE mg)	FEET 11 (15)	NIUM g)	ZINC	(mg)	NORTH PROPER	SSIUM ng)
Référence des ANC	ANG	2001	ANC 2	2001	ANC	2001	ANC	2001	ANG	2001	ANC	2001	ANC	2001	OMS	2013
	ANC	BNM	ANC	BNM	ANC	BNM	ANC	BNM	ANC	BNM	ANC	BNM	ANC	BNM	ANC	BNM
4-6 ans	700	539	130	108	1	0,8	90	64	450	347	30	23,1	7	5,4	2460	1894
7-9 ans	900	693	200	166	1,2	0,9	120	85	600	462	40	30,8	9	6,9	2980	2294
10-12 ans	1200	924	280	232	1,5	1,2	150	107	830	639	45	34,7	12	9,2	3050	2348
G 13-15 ans	1200	924	410	340	1,5	1,2	150	107	830	639	50	38,5	13	10,0	3510	2703
F 13-15 ans	1200	924	370	307	1,5	1,2	150	107	800	616	50	38,5	10	7,7	2800	2156
H 16-19 ans	1200	924	410	340	1,5	1,2	150	107	800	616	50	38,5	13	10,0	3150	2703
F 16-19 ans	1200	924	370	307	1,5	1,2	150	107	800	616	50	38,5	10	7,7	2840	2187
H 20-64 ans	900	693	420	349	2	1,5	150	107	750	578	60	46,2	12	9,2	3510	2703
F 20-54 ans	900	693	360	299	1,5	1,2	150	107	750	578	50	38,5	10	7,7	3510	2703
H 65-75 ans	1200	924	420	349	1,5	1,2	150	107	750	578	70	53,9	11	8,5	3510	2703
F 55-75 ans	1200	924	360	299	1,5	1,2	150	107	800	616	60	46,2	11	8,5	3510	2703
H-F >75 ans	1200	924	400	332	1,5	1,2	150	107	800	616	80	61,6	12	9,2	3510	2703

Potassium

Rôle

- > Minéral intracellulaire majeur
- Indispensable à la transmission des influx neuromusculaires, notamment au niveau du myocarde

Sources

- > Fruits et légumes
- Viandes
- > Lait
- Cacao

Sodium

Rôle

- Minéral principal des liquides extra-cellulaires (95%)
- ➤ Indispensable à la transmission des influx neuromusculaires

Sources

- Sel de table
- > Préparations industrielles ou ménagères (exhausteur de goût)
- Certains aliments (charcuteries, coquillages, pain, œuf, fromages, épinards, céleri, certaines eaux)

Magnésium

Rôle

- > Second cation intracellulaire après le potassium
- Cofacteur de plus de 300 réactions chimiques :
 - · Synthèse des acides nucléiques
 - Production cellulaire d'énergie
 - · Absorption des lipides et du calcium
 - · Contraction musculaire
- > Constituant important de l'os

Sources

- Cacao, légumes secs, céréales complètes, épinards, eaux riches en Mg (Hépar, Badoit, Contrex, Arvie)
- > Seulement 30 à 50 % du Mg ingéré est absorbé

Molécules biologiques contenant du fer

Classes de protéines	Molécules	Rôle physiologique
Protéines avec hème	Hémoglobine Myoglobine Cytochromes Cytochrome-oxydase Catalase Peroxydase	Transport de l'oxygène Stockage de l'oxygène Chaîne respiratoire mitochondriale Protection contre le stress oxydatif
Protéines fer-soufre	Succinyl déshydrogénase Aconitase	Cycle de Krebs
Flavoprotéines ferriques	NADH-déshydrogénase Cytochrome réductase Acyl-CoA-déshydrogénase Xanthine oxydase	Métabolisme énergétique Chaîne respiratoire mitochondriale β-oxydation des acides gras Métabolisme des purines

Cacoub, Cah Nutr Diét 2012

Coefficients d'absorption du fer

Fer héminique (viandes, abats, poissons)	20 – 30 %
Fer non héminique (lait, œufs, végétaux)	2 – 5 %
Fer des laits infantiles (sels ferreux + vitamine C)	10 – 20 %
Fer du lait de mère	50 %

	Teneur en fer mg/100g	Coefficient d'absorption	Fer absorbé mg/100g
Boudin noir	23	20 - 30 %	4.6 - 6.9
Foie de veau	5.1	20 - 30 %	1.0 - 1.5
Bœuf	3.0	20 - 30 %	0.60 - 0.90
Agneau	2.1	20 - 30 %	0.42 - 0.63
Charcuterie	1.7	20 - 30 %	0.34 - 0.51
Veau, cuisse de poulet	1.2	20 - 30 %	0.24 - 0.36
Poissons	0.5	20 - 30 %	0.10 - 0.15
Laits de croissance	1.3	10 - 20 %	0.13 - 0.26
Lait de vache	0.05	2 - 5 %	0.001 - 0.0025
Epinards	2.1	2 - 5 %	0.04 - 0.11
Légumes secs	1.6	2 - 5 %	0.03 - 0.08

Zinc

Rôle

- > Synthèse protéique
- > Expression génique
- Métabolisme des AGPI
- Réponse immunitaire
- > Elimination des radicaux libres (antioxydant)

Sources

- > Coquillages, viandes
- Lait, œufs, céréales
- > Seulement 20 à 30 % du Zn ingéré est absorbé

· Carence en zinc

- > Anorexie, retard de croissance, RCIU
- > Troubles de l'immunité, susceptibilité accrue aux infections
- > Troubles cutanés (acrodermatitis enteropathica), chute des cheveux
- Diarrhée chronique
- > Troubles de la vision

Cuivre

Rôle

- Minéralisation osseuse
- > Transmission nerveuse, activité cardiaque
- Rôle antioxydant

Sources

- > Foie, féculents, légumes secs
- > Seulement 20 à 40 % du Cu ingéré est absorbé

Carence en cuivre

- > Anémie, diarrhée chronique, ostéoporose
- Rarissime

Iode

Rôle

- > Synthèse des hormones thyroïdiennes
- Sources
 - Sel iodé
 - > Produits marins (poissons, crustacés, mollusques, algues)
 - > Produits industriels (conservateurs et colorants iodés)
 - Lait et dérivés, céréales, œufs

· Carence en iode

- > Retard de croissance staturo-pondérale
- > Retard de développement psychomoteur

Sélénium

Rôle

- Antioxydant ++
- Synthèse des hormones thyroïdiennes
- Réponse immunitaire

Sources

- > Sous forme associée aux acides aminés (méthionine, cystéine)
- > Aliments protéiques (viandes, poissons, crustacés, abats, œufs), céréales, lait
- > 50 à 90 % du Se ingéré est absorbé

· Carence en sélénium

- Exceptionnel
- Cardiomyopathie, myopathie périphérique, éclaircissement des cheveux et opacification des ongles, anémie, neutropénie

ALIMENTS	APPORTS EN NUTRIMENTS
PRODUITS LAITIERS	Calcium, phosphore, vit B1, B12, A, D, potassium
VIANDE, ŒUFS FOIE POISSON	Fer, zinc, Vit B1, B8, B12 Vit B9, B12, A, fer, zinc Fer, zinc, sélénium, iode, Vit B1, B8, B12, A, D
LEGUMES FRUITS	Vit C, E, ßcarotène, potassium
CEREALES	Magnésium, Vit B1, B9
LEGUMINEUSES	Fer, magnésium, potassium
HUILES BEURRE	Vit E Vit A
OLEAGINEUX	Magnésium, Vit E
SOJA	Fer, Vit E
LEVURES	Vitamines B1, B9

Les nutriments:

A - Les protéines

Leur rôle :

- participe peu au métabolisme énergétique < 10%
- Fournisseur d'azote 1g de protéines = 6,24g
- participent au transport, à l'immunité, à la protection
- Précurseurs d'hormones, d'enzymes
- Construction cellulaire : structure (collagène)

Utilisation:

- Pas de stockage mais contribue à la formation de la masse musculaire
- Sont oxydées en cas d'afflux important (foie en période post prandiale)
- plus on en consomme plus on en utilise!

Nutriment	LES PROTEINES
Composition	Polypeptides (>100 A.A.) Peptides (chaine d' A.A.) Acides Aminés (A.A.) unités de base dont 13 sont essentiels car non synthétisés par l'organisme: Leucine, Isoleucine, Valine (BCCA), Lysine, Méthionine, Phénylalanine, Thréonine, Tryptophane, Histidine Doivent représenter 40% de l'ensemble des A.A. definit la valeur biologique de la protéine
Energie	1g = 4 Kcal ou (4x 4.18 Kj)
ANC	1 à 2.5 g / Kg de poids maigre : ne pas dépasser 3g !
Origine	Animale : meilleure VB Végétale : non complète il faut associer au cours d'un même repas les légumineuses (pas de méthionine) avec les céréales (pas de lysine) pour obtenir une protéine complète équilibrée
Particularité	Assimilation rapide © Lactosérum (idéal pour récup avec glucide) Assimilation lente © Caséine

Valeurs biologiques de que	lques sources
Isolat de Whey	110
Concentré de Whey	104
Œuf entier	100
Lait de vache	91
blanc d'œuf	88
Poisson	83
Bœuf	80
Poulet	79
Caséine	77
soja	74
Riz	59
Blé	54
Haricots secs	49

Besoins en acides amines indispensables de l'adulte et profils de référence en acides aminés indispensables (2007) (d'après 2,3)

,	FAO/W	HO/UNU	AFSSA		
	mg/kg/j	mg/g protēine*	mg/kg/j	mg/g protēine*	
Histidine	10	15	11	17	
Isoleucine	20	30	18	27	
Leucine	39	59	39	59	
Lysine	30	45	30	45	
Méthionine +cy stéine	15	22	15	23	
Méthionine	10	16	-	-	
Cystéine	4	6	-	-	
Phénylalanine +tyrosine	25	38	27	41	
Thréonine	15	23	16	25	
Tryptophane	4	6	4	6	
Valine	26	39	18	27	
Total	184	277	178	270	

^{*} Besoins en acides aminés de l'adulte / 0,66 g/kg/j de protéines.

	Pro	otéines	
forme	Fonction	Pour	Contre
Hydrolysats	la Prédigestion accélère l'absorption	Les peptides à chaînes courtes peuvent élever (si disponible) le taux d'IGF-1	
ВСАА	Soutient le métabolisme musculaire et la filière alanine-glucose	Peuvent être converti en énergie pour éviter le catabolisme musculaire	Coût élevé pour un besoin facilement couvert par l'alimentation
Di-Tripeptides	Peptides fournissant 2 à 3 a.a. par hydrolyse vites métabolisés	¬IGF-1 et le métabolisme des protéines	Coût élevé Qualité à vérifier
Protéines végétales	Légumineuses, céréales, fruits à coque	Peu coûteuses et riches en anti oxydants, fibres	Sauf soja, quinoa, elles sont incomplètes et doivent être associées
Protéines animales	Viandes, poissons, œufs, laitages	riches en AAE, elles sont complètes	souvent riches en graisses saturées

Pratique sportive	Besoin protéique (par kilo par jour)	Exemple de consommation nécessaire en "viande/poisson/œufs" et "Produits laitiers"		
Sport de loisir (1 à 3 séances de sport par semaine)	0,83g (similaire à un adulte sédentaire)	1 à 2 portions de viande/poisson/œuf et 3 produits laitiers (recommandations du PNNS)		
Endurance (4 ou 5 séances d'au moins 1 heure par semaine)	1,1g	1 à 2 portions de viande/poisson/œuf et 3 produits laitiers (recommandations du PNNS)		
Endurance de très haut niveau	1,6g	2 portions de viande/poisson/œuf et 3 à 5 produits laitiers ou plus		
Force (entretien de la masse musculaire)	1,3 à 1,5g	2 portions de viande/poisson/œuf et 3 à 5 produits laitiers		
Force (augmentation de la masse musculaire)	2 à 2,5g (6 mois par an maximum)	2 portions de viande/poisson/œuf et 4 produits laitiers ou plus et éventuellement des suppléments (6 mois par an maximum)		

LES QUANTITES A RESPECTER :

Les poudres de protéines en compléments :

Maximum : 1/3 de la ration totale

Et au plus 1g/Kg de poids

ATTENTION au surdosage :

Métabolisme protéique, de l'uréogenèse,

Calcium si manque K

Excès transformé en graisse

Régime hyper protidique : maxi six mois !

B - Les glucides

Leur rôle :

- participe au métabolisme énergétique
- Participe à la protection cellulaire au niveau de la membrane plasmique
- participe à la reconnaissance des groupes sanguins
- Est stocké au niveau du foie (100g) et des muscles (100 à 300g/Kg) sous forme de glycogène
- En excès peuvent-être transformés en acides gras (cycle de novo) (quantité minime qq g/jour)

Utilisation:

- en permanence par les cellules <u>glucodépendantes</u> : cerveau, hépatocytes, globules rouges...
- besoins minimum de 120g/jour (consommation cerveau = 5g/heure)
- En période post prandiale pour les tissus <u>insulino</u> dépendants : muscles, tissu adipeux....

	Index	Aliments
	105	Maltose
	100	Glucose
	90	Miel, carotte
965	88	Pommes de terre (Purée)
evé	85	Saccharose (sucre de table)
Index élevé	80	Pomme de terre, Corn Flakes
lex	79	Fèves
Ĭ	72	Pain blanc, riz blanc
(68)	71	Millet
	66	Pain complet, riz brun
	62-64	Raisins, bananes, betteraves rouges
	60	Pâtes
xa en	59	Maïs
Index	54	biscuits
= =	50	Spaghettis, petits pois
	46	Jus d'orange
	24-40	Pomme, agrumes selon degrè de maturité
v	36	Yaourts, glaces
ba	32-34	Lait
Index bas	31	Haricots
pu	29-30	Lentilles, haricots blancs, pois cassés
	20	Fructose
	15	Soja

Nutriment	LES GLUCIDES
Composition	Oses formant des chaines de polysaccharides = ou – complexes formant des sucres et des fibres : - Hexose : saccharose, lactose, fructose, maltose - Amylopectine ou fibre soluble ex : pectine amylose ou fibre complexe : grains entiers céréales, enveloppes légumineuses
Energie	1g = 4 Kcal ou (4x4.18 Kj)
ANC	4 à 10 g / Kg de poids maigre
Origine	Animale : produits laitiers Végétale : Fruits, légumes, céréales, légumineuses
Particularité	Assimilation rapide sucre et produits sucrés Assimilation lente saliments non raffinés, grains entiers, cuisson al dente, mélangé à des corps gras Choix en fonction de Index Glycémique

C - Les Lipides

Leur rôle:

- participe peu au métabolisme énergétique en période post prandiale et lors de jeûne
- Stockés sous forme de triglycérides au niveau des adipocytes
- participent au transport (myéline), à l'immunité, à la protection
- Précurseurs d'hormones,
- Constituant de la membrane plasmique

Utilisation:

- sont oxydés en période post prandiale et stocké avec le glycérol grâce à l'insuline
- *Sont utilisés en période de jeûne, d'activité physique et ses dérivés (acides cétoniques) servent de substrats énergétiques au cerveau, au cœur, au rein....
- Réserve énergétique importante : environ 108 000 Kcal (12 Kg) pour un H de 70 Kg

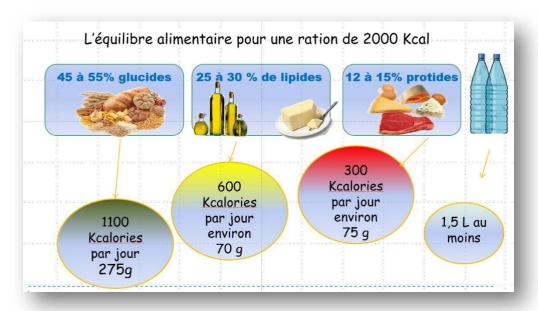
Nutriment	LES LIPIDES
Composition	Acides Gras + ou – saturés en fonction de leurs liaisons et qui définit sa nature :
Energie	1g = 9 Kcal ou (4x 4.18 Kj)
ANC	1 g / Kg de poids maigre
Origine	Animale : produits laitiers, corps gras, VPO Végétale : Fruits, Huiles, margarines,
Particularité	Plus une huile est polyinsaturé plus elle est oxydable donc fragile : craint la lumière, la chaleur

∠ le taux de cholestérol (LDL) : huile d'olive, de Colza, d'Arachide, d'avocat, de noisette, 7 le taux de cholestérol (LDL) : Beurre, graisse de volaille fromage, crème, graisse de porc, de bœuf, andouille, mouton, huile de noix de coco ou de palme ∠ le taux de cholestérol (LDL) : huile de noix, de Colza, de graines de lin ou de chanvre, sardine, maquereau, saumon, thon **ALIMENTS** AGS AGM AGP Acide gras trans Produits laitiers, 38 % 60 % 2% beurre, fromage, lait ⊿les taux de cholestérol et de 50 % 50 % 0.% triglycérides Poisson 30 % 20 % 50 % Ce sont des graisses d'animaux ruminants et des Œnfs 35 % 50 % 15 % produits issus de l'hydrogénation Margarine tournesol 20 % 40 % 40 % industrielle et du chauffage de l'huile 9% Huile d'olive 15 % 76% végétale dans les plats préparés 8 % Huile de colza 30 % A limiter! 47 % Huile d'arachide 21% 32 % Huile de soja 15 % 21 % 64 % Les épices, comme le curry, aurait un effet bénéfique sur le taux de HDL Cholestérol qu'il augmente. Il en est de même pour l'activité physique qui, pratiquée régulièrement permet aussi de l'élever!

Les graisses ne sont pas homogènes et il convient de choisir les aliments sur la journée afin de conserver un bon équilibre dans les apports en acides gras.

Pour rappel : sur la journée, entre 25 et 33% de graisses, cachés dans les aliments + apports : huile, beurre...

Et un rapport sur énergie total quotidien :


AGS < 8% AGMI : 20% et AGPI : 4%

Exemple pour une ration à 2000 Kcal: 73g (33%) dont AGS < 18g; AGMI: 45g; AGPI: 9g

Pour 10ml ou g de lipides					Kcal			
		AGMI	AGPI	AL ω 6	ALA ω 3	EPA	DHA	Apport Energétique
	< 17 g	45 g		6 g	2 g	0,25	0,25	
4	0,7	5,2	3,7	2,86	0,8	0	0	86,4
2	0,8	6,2	2,6	1,75	0,82	0	0	86,4
3	0,7	5,1	3,8	2,76	1,04	0	0	86,4
5	1	2,8	5,8	4,79	0,98	0	0	86,4
g 5	0,8	1,7	6,6	5,48	1,05	0	0	81,9
g 41	0,8	7,3	2,1	2,04	0,05	0	0	91,8
g 42	0,7	7,3	0,9	0,84	0,02	0	0	80,1
g 23	1,9	6,2	1,2	1,17	0,05	0	0	94,5
g 11	1,4	6,9	1,1	0,99	0,09	0	0	94,5
g 11	1,4	7	1,1	0,88	0,08	0	0	94,5
g_ 4	3,6	7,1	2,6	0,8	0,2	0,4	0,5	230
g	4,8	5,4	2,7	0,2	0	0,9	1	203
g 1,5	4	5	2,7	0,3	0,2	0,7	1,1	184
g 4	2	3,8	3,7	0,4	0,1	0,8	1,5	180
g 2	2,4	2,6	2,6	0,2	0,1	0,9	1	163
3	1,6	2,1	1,8	0,1	0	0,4	0,2	175
	Λ 0	1 2	1 2	0.2	0	0.2	ΛF	125
							•	78
								97
					_			89
	0,2	0,4	0,3	0	0	0,1	0,2	92
	AL/ALA 4 2 3 5 4 4 2 3 5 4 1 1 4 4 2 3 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	AL/ALA <17 g 4 0,7 2 0,8 3 0,7 5 1 8 5 0,8 9 41 0,8 9 42 0,7 9 23 1,9 9 11 1,4 9 11 1,4 9 11 1,4 9 11 1,4 9 1,5 9 4 2 9 4 2 9 7 9 1,6 9 0,8 9 0,4 9 0,3 9 0,2	Rappoi AGS AGMI AL/ALA < 17 g 45 g 4 0,7 5,2 2 0,8 6,2 3 0,7 5,1 5 1 2,8 8 5 0,8 1,7 3 41 0,8 7,3 3 42 0,7 7,3 3 1,9 6,2 3 1,4 6,9 3 1,4 6,9 4 1,4 7 3 4 2 3,8 4 2 3,8 5 4 2 3,8 6 2,4 2,6 6 1,6 2,1 6 0,4 0,4 6 0,3 0,4 0,2 0,4	Rappoi AGS AGMI AGPI AL/ALA < 17 g 45 g 4 0,7 5,2 3,7 2 0,8 6,2 2,6 3 0,7 5,1 3,8 5 1 2,8 5,8 5 0,8 1,7 6,6 4 0,8 7,3 2,1 4 2 0,7 7,3 0,9 2 23 1,9 6,2 1,2 3 11 1,4 6,9 1,1 4 3,6 7,1 2,6 4 3,8 5,4 2,7 3 1,5 4 5 2,7 4 2 3,8 3,7 2 2,4 2,6 2,6 3 1,6 2,1 1,8 3 0,4 0,3 4 0,4 0,2 3 0,2 0,4 0,4 4 0,3 0,4 0,3 6 0,2 0,4 0,4 0,4	Rappol AGS AGMI AGPI AL AL/ALA AL/ALA 45 g 6 g 4 0,7 5,2 3,7 2,86 2 0,8 6,2 2,6 1,75 3 0,7 5,1 3,8 2,76 3 0,7 5,1 3,8 2,76 5 1 2,8 5,8 4,79 5 1 2,8 5,8 4,79 41 0,8 7,3 2,1 2,04 3 42 0,7 7,3 0,9 0,84 2 3 1,9 6,2 1,2 1,17 3 11 1,4 6,9 1,1 0,99 1 1 0,88 4 3,6 7,1 2,6 0,8 4 3,6 7,1 0,88 3 1,5 4 5 2,7 0,3 3 4 2 3,8 3,7 0,4 3 2 2,4 2,6 2,6 0,2 4 3,6 7,1 1,8 0,1 3 0,8 1,3 1,2 0,2 4 0,4 0,2 0 6 0,3 0,4 0,3 0 7 0,2 0,4 0,4 0,4 0,2 8 0,3 0,4 0,3 0 9 0,2 0,4 0,4 0,4 0,4 0	Rappol AGS AL/ALA AGMI AGPI AL ALA ω 6 ω 3 <17 g	Rappor AGS AGMI AGPI AL ω 6 ω 3 < 17 g 45 g 6 g 2 g 0,25 4 0,7 5,2 3,7 2,86 0,8 0 0 <td< td=""><td>Rappol AGS AGMI AGPI AGS AL ALA EPA DHA AL/ALA - 17 g 45 g 6 g 2 g 0,25 0,25 4 0,7 5,2 3,7 2,86 0,8 0 0 0 0 0 0 0 2 0,8 6,2 2,6 1,75 0,82 0 0 0 0 0 0 0 0 3 0,7 5,1 3,8 2,76 1,04 0 0 0 0 0 0 0 0 0 0 5 1 2,8 5,8 4,79 0,98 0 <td< td=""></td<></td></td<>	Rappol AGS AGMI AGPI AGS AL ALA EPA DHA AL/ALA - 17 g 45 g 6 g 2 g 0,25 0,25 4 0,7 5,2 3,7 2,86 0,8 0 0 0 0 0 0 0 2 0,8 6,2 2,6 1,75 0,82 0 0 0 0 0 0 0 0 3 0,7 5,1 3,8 2,76 1,04 0 0 0 0 0 0 0 0 0 0 5 1 2,8 5,8 4,79 0,98 0 0 <td< td=""></td<>

NUTRIMENTS	BESOINS	FONCTIONS	CARENCES
NUTRIMENTS	1,2 à 1,7 g/Kg	Biosynthèse des protéines, maintien de la	Catabolisme,
	1,2 a 1,7 g/Ng	masse musculaire	Catabolisme,
PROTEINES	2, à 3g/Kg maxi	hypertrophie musculaire : 1,5 à 2 fois les	
	de poids maigre	ANC	
	_	Source énergétique, constituant le	Entraine fatigue, état
		glycogène	dépressif, baisse de
	2 2 3 4 0 4 2 4 7 7 7	Très diminuée par le culturiste en période	l'immunité
GLUCIDES	2,5 à 10-12 g/Kg	hypocalorique : régime cétogène et très	Besoin minimal:
	de poids	augmentée en période pré-compétitive : surcompensation glycogénique.	120g/j (organes gluco- dépendants : foie,
		Action sur la glycémie, la vigilance,	cerveau, globules
		racion our in gryconno, in vigininoo,	rouges)
	1 g/Kg de poids	Apporte les AGE ω3 et ω6 dans un rapport	Troubles
	minimum avec	équilibré de 1 à 5, précurseurs de	neuromusculaires,
	0,25g d'EPA et	prostaglandines	dépression hormonale,
	0,25g de DHA 20 à 50 *%	Vitamines liposolubles,	baisse de l'immunité
LIPIDES	∠∪ a JU · 70	Cholestérol précurseur d'hormones Conduction nerveuse, fluidité membranaire	
	*chez le	% élevé de la ration chez les culturistes en	
	culturiste te en	régime cétogène	
	période de		
	« sèche »		
VITAMINES:	Duomonti 11 . `	Coenzyme dans le métabolisme des	Estique (hes-i 7 -
Thiamine B1	Proportionnelle à l'AE 1,1 à 1,3	glucides : besoins augmentés chez le	Fatigue (besoins ↗ par la consommation
	mg	culturiste en zone hyper glucidique	d'alcool)
	+1mg//1000	culturiste en zone ny per gruerurque	1/2 apporté par les
Riboflavine B2	Kcal	Facteur enzymatique (NAD, NADP)	produits animaux, 1/3
			par les produits
N D.	1,5 à 1,6 mg		céréaliers.
Niacine B3	+1 mg /1000Kcal		
В6	11 à 14 mg + 2,5	Métabolisme protéique (0,016 mg/g de	
	-	Protéine)	
Folates B9	1,5 à 1,8 mg + 1	B6, B9, B12 contribue au maintien du	
	à 2	système cardiovasculaire, participe à	
C. b. l	300 à 330 µg +	l'hématopoîèse, abaisse	
CobalamineB12	100	l'homocystéinémie(// homocystéine=facteur d'athérosclérose)	B12 essentiellement
	2,4 µg		issue des produits
	∠, ⊤ µ g	Antioxydant, intervient dans de nombreux	animaux
С		métabolismes (cellulaire, hormonale,	
	110 à 600 mg	musculaire et cérébral), antifatigue elle	
	-	stimule les défenses de l'organisme,	
		activateur de l'absorption du fer, nécessaire à la synthèse des catécholamines, et de la	
		carnitine	
E		Anti-oxydante et anti-radicaux libres,	
		Limite le processus d'inflammation au	Peroxydations des
A . 0	12 mg + 12mg	niveau des muscles et des tendons,	AGPI
A + ßcarotène	-		
	600 à 800 µg +	Contribue au maintien de la masse	
D	200 µg	musculaire, a une action sur les cellules	
	5 \ 10 · ·	pancréatiques et la sensibilité à l'insuline	
A WENTED A FIRE	5 à 10 µg		1
MINERAUX:	métabolisme énerg	fer, magnésium, sélénium, chrome, iode pour le rétique	eurs actions sur le
	1ml/kcal	De 1,5 à 3 L et plus par jour en fonction des	Déshydratation,
EAU	3ml/g de P	cycles d'entraînement et de l'alimentation	crampes, difficultés

D – L'équilibre alimentaire

ALIMENTS	QUANTITE	PROTIDE	LIPIDE	GLUCIDE	Fe	CALCIUM
Laits et produits laitiers écrémés	250	8	4	13	0,25	300
Fromage : 1 portion/jour	40	8	9	0	0,12	200
Viande-œufs	100	18	10	0	2,5	10
Poisson-	100	18	5	0	1,5	20
Céréales : pain	150	12	0	75	1,5	30
Féculents : farine, fécule, flocons	10	1	0	8	0,15	1,5
Pomme de terre et équivalents	300	6	0	48	2,1	21
Légumineuses cuites : lentilles, haricots blancs, rouges	200	14	2	35	5,6	35
Légumes : verts, rouges, jaunes Cuits et crus	500	5	0	25	3	200
Fruits cuits et crus	450	0	0	54	1,8	90
Huiles : colza	30	0	30	0	0	0
Beurre,	10	0	8	0	0,02	0
Sucrerie : confiture, sucre, miel	20	0	0	20	0	0
TOTAUX en g :	2160	90	68	277	19	908
TOTAL Mj :	8,7	17	29	53	™% des Kcal	
TOTAL Kcal :	2077	359	610	1108		
Equilibre des nutriments :	PROTIDES	GLUCIDES	GLUCIDES	GLUCIDES	LIPIDES	LIPIDES
	P Animales/P Végétales >=1	Total AMIDON en Kcal entre 25 ET 36% AET	Total sucres 5 simples en Kcal entre19 et 25% AET	G simples < 10% Ration	L Végétaux + poisson / total L>2/5	L de constitution /L corps gras =< 1
Valeurs cibles calculées : Valeurs obtenues pour la ration :	1 1	32%	21%	52 4%	27 35	1 0,7

PROFIL DES LIPIDES (en fonction de l'AET calculée)					LIPIDES DE L	A RATION CALCULEE
TOTAL L	IPIDES DE LA RATIO	ON:	68 g		68 g	%
AGS	< 12%	27 g	dont : Acid	de Laurique,	20,2 g	9 %
AGMI	15 à 20%	34 g	Myr	ristique et Palmitique < 8%	34,24 g	15 %
AGPI	1% ω3:	2 g et 4	% ω6 :	9,05 g	12,31 g	5 %
. ام	ent:	0,25 g			4,05 g	2 %
u	DHA	0,25 g				

ALIMENTS	QUANTITE	PETIT DEJEUNER	DEJEUNER	DINER	coll 1	coll2
Laits et produits laitiers écrémés	250				125	125
Fromage : 1 portion/jour	40	40				
Viande-œufs	100		100			
Poisson-	100			100		
Céréales : pain	150	100	25	25		
Féculents : farine, fécule, flocons	10				10	
Pomme de terre et équivalents	300		150	150		
Légumineuses cuites : lentilles, haricots blancs, rouges	200		100	100		
Légumes : verts, rouges, jaunes Cuits et crus	500		250	250		
Fruits cuits et crus	450	150			150	150
Huiles : colza	30		15	15		
Beurre,	10				10	
Sucrerie : confiture, sucre, miel	20				10	10

Exemple de menu

Petit déjeuner	déjeuner	dîner	Collation avant	Collation après
			sport	sport
100g de pain	crudités en	Gaspacho froid	Crème	150mlde lait
noir	salade avec	Lentilles et	pâtissière aux	écrémé + cacao
Fromage de	colza	carottes	fruits secs ou	en poudre et
brebis	2 œufs avec	braisées	Yaourt nature +	banane
Jus de fruit	épinards et riz		2 petits beurre	
	complet		+ abricots secs	

L'entraînement déclenche une **adaptation hormonale à l'effort** dont il faudra tenir compte pour amener le conseil adapté, en termes d'alimentation, en fonction du statut nutritionnel et de l'activité (*LANG*, 5ème tirage 2010)

HORMON ES	INSULINE	HORMONE DE CROISSANCE	TESTOSTERO NE	CORTISOL	CATECHOLAMI NES adrénaline, noradrénaline, dopamine	GLUCAGON
Fonction	hypoglycémia nt	Métabolisme cellulaire	√masse musculaire et osseuse, √l'érythropoïè se	Adaptation du métabolisme à un stress	Hormones du stress : hyperglycémiant	hyperglycémi ant
Précurseu rs	Acides aminés	Acides aminés	Cholestérol & pr	régnénolone	Acides aminés	Acides aminés
Inhibé par	Jeûne Activité physique	Hyperglycémi e, Hyperlipidémi e, Obésité (excès d'æstrogènes) Le froid,	Importants efforts physiques ou psychiques Dérégulation des récepteurs Esérotonine Emélatonine	La morphine, la glycolyse		Glucose, Acides gras libres plasmatiques
Stimulé par	Certains acides aminés, les glucides Hormone de croissance, Hormones gastro- intestinales	Jeûne, Acides aminés, le glucagon, la dopamine et le stress, la chaleur		Adrénaline, L'ADH, L'histamine, Les chutes de tension, La douleur, Le jeûne (hypoglycémie) , Les pyrogènes (interleukines, TNF)	Stress, glucocorticoïdes,	Jeûne, L'alanine, l'arginine, Activité physique prolongée
ACTION S	UR:					
Les protéines	Anabolisme :7	Anabolisme:7 7collagène 7érythropoïét ine	Anabolisme:7	⊅protéolyse		∠catabolisme
Les glucides	Hypoglycémia nt : ∠glycolyse ⊅glycogène ∠glycogénolys e	⊅néoglucogen èse	∠testostérone = ∠glycogénogen èse	Hyperglycémia nt : ⊅glycolyse, ⊅glycogénolys e	⊅glycogénolyse ⊅glycolyse	⊅glycolyse ⊅glycogénoly se
Les lipides	⊅lipogenèse ⊭lipolyse	∠lipogenèse et 7lipolyse	∠testostérone = ⊿athéroscléro se	⊅lipogenèse (surtout abdominale)	7lipolyse	7lipolyse

Les conseils alimentaires et autres éléments de l'hygiène de vie, pour les sportifs, en découlant :							
Avant	Eviter les brusques montées de l'insuline en ne prenant pas à jeun de sucres rapides car risque d'hypoglycémie et activation de la lipogenèse	hygiène de vie, sommeil de qualité	Alimentation de qualité : conserver un apport en acides gras suffisant pour obtenir ceux qui sont essentiels. cholestérol et DHA précurseurs	Limiter les conséquences de son apparition (du au stress avant compétition) en ingérant des glucides à IG bas (fructose) afin de fournir les sucres tout en limitant l'7de l'insuline	Limiter les excitants afin de réguler les taux et les effets	A jeun ou lors de restriction calorique :	
Pendant	Dans l'effort, la montée d'insuline par prise d'une boisson sucrée permet l'économie du glycogène par utilisation de ces sucres ingérés	7durée de l'effort ou intensité > 80%		Economie du glycogène (séance longue et/ou statut nutritionnel bas) à partir d'un mélange de glucides rapides (glucose, saccharose, fructose): 7insuline, antagoniste du cortisol		éviter l'apport de protéines prises seules car entraîne leur catabolisme.	
Après	Dès l'arrêt de l'exercice : Apports de Glucides rapides et de protéines (rapport 3/1) afin de stimuler sa production car elle induit l'anabolisme, la glycogénogenèse nécessaire à la restauration des substrats utilisés et à l'augmentation de la masse maigre	Sauna, Sommeil suffisant	Alimentation qualitative (surtout en hypo- calorie : AGE nécessaires) et repos suffisant car surentraînement = \(\text{\testostérone} \)	Inhiber sa production en ingérant des glucides à IG rapide de façonà stimuler l'insuline.	Repos	Ajouter des glucides aux protéines va permettre d'inhiber le glucagon et d'assurer la synthèse	

Tout l'enjeu de la diététique sera donc **de servir l'athlète**! Avec pour objectif l'acquisition et/ou la conservation de son poids de forme. Celui-ci pouvant être la résultante d'une ration alimentaire équilibrée, d'un meilleur travail, dune récupération optimale, le tout associé à des performances élevées.

Pour cela, la priorité est de **concevoir des plans alimentaires** qui seront adoptés et suivis par le sportif. Ils devront donc être personnalisés, prendre en compte les aversions, croyances, traditions culinaires... Si de grosses modifications doivent être apportées, elles se feront de façon progressive et mesurée, en concertation avec le pratiquant.

4 - L'importance des rythmes alimentaires :

Il existe un **timing optimal** pour apporter à l'organisme les éléments qui lui sont nécessaires et celui-ci va permettre un meilleur taux d'absorption et donc de récupération!

Les règles :

L'apport énergétique juste avant et pendant l'exercice :

Nutriments	Au régime	Sans régime		
Glucides	Les limiter au minimum	collation incluant des		
	autorisé par votre	glucides complexes à lg bas		
	régime	à moyen dont l'absorption		
		progressive permettra de		
		réguler la glycémie et des		
		glucides simples pour		
		l'apport immédiat d'énergie		
Protéines	Leur apport est	1heure avant l'effort (au		
	augmenté car servent	moins) l'association de		
	de carburant, par défaut	protéines à des glucides		
	de glucides dans le but	optimise l'absorption de ces		
	d'activer la lipolyse à	derniers.		
	des fins énergétiques			
Lipides	Limiter aux acides gras	Si repas 3 heures avant,		
	essentiels non	ration normale		
	synthétisés par	Equilibrée en acides gras		
	l'organisme	Près de l'effort : les éviter		
		car ralentissent la digestion		
Eau	Boire régulièrement tout au long de la journée et tous			
	les ¼ d'heures pendant l'effort (150 à 200ml par prise)			

L'apport énergétique juste après l'exercice si un repas n'est pas pris dans l'heure :

Nutriments	Au régime Sans régime			
Glucides	Si taux de masse grasse très bas : possibilité de prendre une boisson glucidique pendant l'effort pour éviter le catabolisme et permettre de réaliser une séance correcte	Apport immédiat de glucides simples destinés à reformer les stocks glycogéniques : plus on attend moins l'effet se montre efficace!		
Protéines	Leur apport est augmenté car servent de carburant par défaut de glucides dans le but d'activer la lipolyse à des fins énergétiques + des glucides compris dans la ration	Apport de protéines avec les glucides pour bénéficier d'une meilleure absorption et optimiser l'anabolisme. Rapport optimal : 1P pour 3G		
Eau	Boire régulièrement afin de récupérer celle perdue lors de l'effort (sudation : si celle-ci est importante on peur utiliser des eaux légèrement salée pour récupérer des minéraux, et bicarbonatée pour un effet supposé de tamponnage (rééquilibre acide-base)			

Exemples d'en-cas post-entraînement :

- ⇒ Apportant 10 à 20g de Protéines et 30 à 60g de glucides, suffisant dans la majorité des cas
 - ✓ 2 tranches de pain d'épice (30gG) + 200g de fromage blanc 0% (~10gP)
 - ✓ 250 ml de yaourt à boire sucré (yoplait pêche : 7,5gP et 45g)
 - ✓ 2 yaourt nature 0% + banane mûre (8gP et ~30gG)
 - √ 60g de baguette + 200g Fromage faisselle maigre (8gP + 30gG)
 - ✓ 250 ml lait + 20g chocolat en poudre (9gP et 28gG) par exemple cacolac Danone cacao.

